12. LIST OF SYMBOLS AND ABBREVIATIONS In the following list the English alphabet precedes the Greek alphabet, and lower-case letters precede upper-case letters. As a general rule, upper-case letters have been used for quantities expressed in decibels, for example w_t is transmitter power in watts, and W_t is transmitter power in decibels above one watt. When the upper-case symbol is the decibel equivalent of a lower-case symbol they are usually listed together. Symbols that are used only in an annex are defined at the end of the appropriate annex, in Volume 2. Sometimes a symbol may be used in quite different contexts, in which case it is listed for each separate context. Subscripts are used to modify the meaning of symbols. The order is: | 1. | Symbol without a subscript | h | |----|-------------------------------------------------------------|----------------| | 2. | Symbol with a subscript, (letter subscripts in alphabetical | h _r | | | order followed by number subscripts in numerical order | h ₁ | | 3. | Symbol as a special function. | h(x) | | 4. | Abbreviations. | ht | Following each definition an equation number or section number is given to show the term in its proper context. Where applicable, reference is made to a figure. Throughout the report, logarithms are to the base 10 unless otherwise noted. - Effective earth's radius, allowing for average radio ray bending near the surface of the earth, (4.4) figure 4.2. - a An equivalent earth's radius which is the harmonic mean of the radii a and a (7.10). - The radius of a circular arc that is tangent to the receiving antenna horizon ray at the horizon, and that merges smoothly with the corresponding arc through the transmitting antenna horizon, (8.9) figure 8.7. - a Effective earth's radius factor corresponding to D, (8.15). - Radius of a circular arc that is tangent to the transmitting horizon ray at the horizon, and that merges smoothly with the corresponding arc through the receiving antenna horizon, (8.9) figure 8.7. - a The axial ratio of the polarization ellipse of a plane wave, (2.11). - The axial ratio of the polarization ellipse associated with the receiving pattern (2.11). - a The actual earth's radius, usually taken to be 6370 kilometers, (4.4). - a Radius of the circular arc that is tangent to the transmitting antenna horizon ray at the horizon, and that passes through a point h kilometers below the transmitting antenna, (8.8) figure 8.7. - Radius of the circular arc that is tangent to the receiving antenna horizon ray at the horizon, and that passes through a point h kilometers below the receiving antenna, (8.8) figure 8.7. - A Attenuation relative to free space, expressed in decibels, defined as the basic transmission loss relative to that in free space, (2, 20). - A a The long-term median attenuation of radio waves due to atmospheric absorption by oxygen and water vapor, section 3. - A ar, A at For transhorizon paths, A = A + A ar, the sum of the absorption from the transmitter to the crossover of horizon rays and the absorption from the crossover of horizon rays to the receiver, section 3. - A Total absorption attenuation within a cloud, (3.13). - A Total absorption due to rainfall over a given path, (3.7). - A Rate of attenuation through woods in full leaf, (5.18). - Diffraction attenuation relative to free space at an angular distance $\theta = 0$ over a smooth earth, section 9.2. - A(v, 0) Attenuation relative to free space as a function of the parameter v, (7.2) figure 7.1. - A(v, ρ) Diffraction attenuation relative to free space for an isolated perfectly conducting rounded obstacle, (7.7), figure 7.3. - $A(0,\rho)$ The diffraction loss for $\theta=0$ over an obstacle of radius r, (7.7) figure 7.4. - B. The parameter B(K, b) corresponding to the effective earth's radius a, (8.15). - $B_{1,2,t,r}$ Values of the parameter B(K, b) that correspond to values of $K_{1,2,t,r}$, (8.13). - B, B Defined by (8.2), (8.13) and (8.15) as the product of several factors, combined for B, B convenience in computing diffraction attenuation. - B' Any point along the great circle path between antenna terminals A and B, figure 6.3. - B(K, b°) A parameter plotted in figure 8.3 as a function of K and b°, (8.2). - c Free space velocity of radio waves, c = 299792.5 ± 0.3 km/sec. - C1 (K1 b°) A parameter used in calculating diffraction attenuation, (8.1) figure 8.4. - $C_1(K_1, b^\circ)$, $C_1(K_2, b^\circ)$ The parameter $C_1(K, b^\circ)$ corresponding to K_1 and K_2 , also written $C_1(K_1)$ and $C_1(K_2)$, (8.11). - $\overline{C}_1(K_{1,2})$ The weighted average of values of $C_1(K_1,b^*)$ and $C_1(K_2,b^*)$, (8.11). - CCIR International Radio Consultative Committee. - d Great circle propagation path distance, measured at sea level along the great circle path determined by two antenna locations, A, and A, figure 6.1. - d Clearing depth in meters, defined as the distance from the edge of woods to the lower antenna along a propagation path, (5.19). - de Effective propagation path distance, a function of d, f , h , and h re, section 10.1, - d_L The sum of the horizon distances d_{Lr} and d_{Lt}. In section 10, d_L is defined for a smooth spherical earth of radius 9000 km, (10.2) and (10.3). - d_{Lr}, d_{Lt} Great circle distances from the receiving and from the transmitting antennas to the corresponding horizons, figure 6.1. - d sr, d Distance between the receiving or transmitting antenna horizon and the crossover of horizon rays as measured at sea level, (6.20). - d_{sr}^{i} , d_{st}^{i} If θ or θ is negative, d_{sr}^{i} or d_{st}^{i} is computed (6.23) and substituted for d_{sr}^{i} or d_{st}^{i} in reading figure 6.9. - d The theoretical distance where diffraction and scatter fields are approximately equal over a smooth earth, (10.1). - d The greatest distance for which the attenuation relative to free space is zero, (5.10). - d₁, d₂ Distance from the transmitting, or the receiving antenna, to the crossover of horizon rays, measured at sea level, figure 6.1. - d₁, d₂ Great circle distance from one antenna of a pair to the point of reflection of a reflected ray, figure 5.1. - dB Decibels = 10 log₁₀ (power ratio) or 20 log₁₀ (voltage ratio). In this report, all logarithms are to the base 10 unless otherwise stated. - dBu Decibels above one microvolt per meter. - dBW Decibels above one watt. - D Divergence coefficient, a factor used to allow for the divergence of energy due to reflection from a convex surface, (5, 2). - D Diameter of a parabolic reflector in meters, (2.7). - D Great circle distance between transmitting and receiving horizons, (6.17), figure 6.1. - D A function of d , d used in computing diffraction loss, (8.16), figure 8.8. - e, e the principal polarization component e of a complex polarization vector e, section 2.3 and annex II. - A complex vector $\overrightarrow{e} = \overrightarrow{e}_{p} + i \overrightarrow{e}_{c}$, section 2.3 and annex II. - f Radio wave frequency in megahertz (megacycles per second). - f(ν) A function used in computing path antenna gain, defined by (9.13) figure 9.7. - Fo The correction term Fo allows for the reduction of scattering efficiency at great heights in the atmosphere, (9.1) and (9.7). - $F(x_1)$, $F(x_2)$. Functions used in computing diffraction attenuation, (8.1) and figures 8.5 and 8.6. - F(θd) The attenuation function used in calculating median basic transmission loss for scatter paths, (9.1) figures 9.1, and III.11 to III.14. - g_r , g_t , G_r , G_t Maximum free space directive gains for the receiving and transmitting antennas respectively, $G_r = 10 \log g_r$ db, $G_t = 10 \log g_t$ db, section 2.2. - g_{r1}, g_{r2} Directive gain factors defined for each antenna in the direction of the point of ground reflection, (5.1). - The maximum value of the operating gain of a receiving system, (V.7). - g. The directive gain for one antenna in the direction of the other, section 5.1. - g₀₁, g₀₂ The directive gain of the transmitting and receiving antennas, each in the direction of the other, assuming matched antenna polarizations, (5.1). - A frequency factor used to adjust predicted long-term variability to allow for g(p, f) frequency-related effects, (10.6) figure 10.3. - $g_{\star}(\hat{r})$, $G_{\star}(\hat{r})$ Free space directive gain of the transmitting antenna in the direction \hat{r} , see also $g'_{t}(\hat{r})$, $G_{t}(\hat{r}) = 10 \log g_{t}(\hat{r})$ db, section 2.2. - Power gain of a transmitting antenna when the power input to the antenna terminals g, is w' watts, section 2.2. - $g'_{\bullet}(\hat{r})$, $G'_{\bullet}(\hat{r})$ Power gain of a transmitting antenna in the direction \hat{r} , $G'_{\bullet}(\hat{r}) = 10 \log g'_{\bullet}(\hat{r})$ db, - The maximum free space directive gain relative to an isotropic radiator (2.5). G - Path antenna gain, the change in transmission loss or propagation loss if hypothetical loss-free isotropic antennas with no orientation, polarization, or multipath coupling loss were used at the same locations at the actual antennas, (2.14). - Path antenna gain in free space, (2.17). G_{pf} - Path antenna power gain, (2.14). G PP G(h) - Residual height gain function, figure 7.1. - $G_{-}^{1}(\hat{\mathbf{f}})$ Power gain, in decibels, of a receiving antenna, (2.4). - $G(\overline{h}_1)$, $G(\overline{h}_2)$ The function $G(\overline{h})$ for the transmitting and receiving antennas, respectively, (7.5). - $G(\hat{r})$ Directive gain of an antenna in the direction $\hat{\mathbf{r}}$. The maximum value of $G(\hat{\mathbf{r}})$ is - Directive gain, in decibels, of a receiving antenna in the direction \hat{r} , (2.4). $G_{\perp}(\hat{\mathbf{r}})$ - A function used in computing diffraction, (8.1) figures 8.5 and 8.6. $G(x_{\lambda})$ - GHz Radio frequency in gigacycles per second. - h Height above the surface of the ground as used in (3.10), (3.12). - Height referred to sea level. h - Equidistant heights of terrain above sea level, (5.15), (6.10). - Height of the receiver or transmitter horizon obstacle above sea level, (6.15). - Height of the intersection of horizon rays above a straight line between the antennas, determined using an effective earth's radius, a, (9.3b) and figure 6.1. - The height h or h is defined as the height of the receiving or transmitting anh , h tenna above the average height of the central 80% of the terrain between the antenna and its horizon, or above ground, whichever gives the larger value, (6.11). - Effective height of the receiving or transmitting antenna above ground. For h, h, less than one kilometer $h_{re} = h_{r}$, $h_{te} = h_{t}$. For higher antennas a correction Δh - Height of the receiving antenna or transmitting antenna above sea level, figure 6.1, h, h (6.11), (6.15). - Elevation of the surface of the ground above mean sea level, (4.3). - The heights above sea level of evenly spaced terrain elevations between the transmitter and its horizon. (6.11). h Height of the crossever of horizon rays above a straight line between the transmitter and receiver horizon obstacles, (9.7) figure 6.1. h₁, h₂ Heights of antenna terminals 1 and 2 above the surface of the earth, figure 5.1. hi, hi Heights of antenna terminals 1 and 2 above a plane tangent to a smooth earth at the bounce point of a reflected ray, (5.8). Average height above sea level, (5.15). Average height of the transmitting antenna above the central 80% of terrain between the transmitter and its horizon, (6.11). \overline{h}_1 , \overline{h}_2 Normalized heights of the transmitting and receiving antennas, (7.6). h(x) A straight line fitted by least squares to equidistant heights above sea level, (5.15). h(0), h(d) Height above sea level of a smooth curve fitted to terrain visible to both antennas, and extrapolated to the transmitter at h(0) and the receiver at h(d), (5.17). h_i(x_i) A series of equidistant heights above sea level of terrain visible to both antennas, section 5.1. H The frequency gain function, discussed in section 9.2. $H_0(\eta_s < 1)$, $H_0(\eta_s = 1)$ Value of the frequency gain function, H_0 , where the parameter η_s is less than or equal to one, respectively, (9.6). $H_0(\eta_s = 0)$ The frequency gain function when $\eta_s = 0$ which corresponds to the assumption of a constant atmospheric refractive index, figure 9.5. Hz Abbreviation for hertz = cycle per second. K A frequency-dependent coefficient, (3.8). K A parameter used in computing diffraction attenuation, K is a function of the effective earth's radius, carrier frequency, ground constants, and polarization, figure 8.1 and annex III.4. A frequency and temperature-dependent attenuation coefficient for absorption within a cloud, (3.13) and table 3.1. K₁, K₂, K_r, K₈, K_t Values of the diffraction parameter K for corresponding earth's radii a_1, a_2, a_r, a_8, a_t , (8.8) to (8.13). K(a), K(8497) The diffraction parameter K for an effective earth's radius a, and for a = 8497 km. K(f_{GHz}) A frequency-dependent coefficient used in computing the rate of absorption by rain, (3.9a) and figure 3.8. 1 er, L er The effective loss factor for a receiving antenna, or the reciprocal of the power receiving efficiency, (2.3), L = 10 log 1 er db. L, Basic transmission loss, (2.13) and (2.14). L_{bd} Basic transmission loss for a diffraction path, (7.3), (7.4). L Basic transmission loss in free space, (2.16). - L Hourly median basic transmission loss. - Ebsr Reference value of long-term median basic transmission loss based on forward scatter loss, (9.1). - L Calculated value of transmission loss. - L Polarization coupling loss, (2.10). - Reference value of hourly median transmission loss when diffraction and scatter losses are combined, (9.14). - L. Reference value of hourly median transmission loss due to diffraction, (9.14). - L, An "equivalent free-space transmission loss," (2.19). - Loss in path antenna gain, defined as the difference between the sum of the maximum gains of the transmitting and receiving antennas and the path antenna gain, (2.21). - L. Transmission line and matching network losses at the receiver and transmitter. - Path loss, defined as transmission loss plus the sum of the maximum free space gains of the antennas, (2.12). - L The system loss expressed in decibels, defined by (2.1). System loss includes ground and dielectric losses and antenna circuit losses. - L Reference value of median forward scatter transmission loss, used with L to obtain the reference value L (, (9.14). - L(q), L(0.5) Long-term value of transmission loss not exceeded for a fraction q of hourly medians; L (0.5) is the median value of L(q), section 10. - $L_b(q), L_b(0.5)$ Long-term value of basic transmission loss not exceeded for a fraction q of hourly medians; $L_b(0.5)$ is the median of $L_b(q)$. - M Liquid water content of a cloud measured in grams per cubic meter, (3.13). - MHz Radio frequency in megahertz. - n Refractive index of the atmosphere, section 4. - n The ratio a/δ_t or β_0/δ_r used to compute \hat{n} , (9.12). - n Atmospheric refractive index at the surface of the earth, (4.1). - n A parameter used in calculating path antenna gain, (9.12). - N Atmospheric refractivity defined as $N = (n-1) \times 10^6$, section 4. - N Surface refractivity reduced to sea level, (4.3). - N The value of N at the surface of the earth, (4.1). - $\hat{p}(\hat{r}), \hat{p}(-\hat{r})$ Complex polarization vectors, section 2.3 and annex II. - $\left|\frac{\hat{p}}{\hat{p}}\cdot\frac{\hat{p}}{\hat{p}_r}\right|^2$ Polarization efficiency for transfer of energy in free space at a single radio frequency, (2.11) and (II.62). - q Time availability, the fraction of time a given value of transmission loss is not exceeded, section 10. - q The ratio $q = r_2/sr_1$ used to compute ΔH_0 , (9.5). - The length in free space of the direct ray path between antennas, figure 5.1. - r Radius of curvature, (7.9). - Effective distance for absorption by oxygen in the atmosphere, (3.4) figures 3.2 to 3.4. - r Effective rain-bearing distance, (3.11) and (3.12) figures 3.10 to 3.13. - r Effective distance for absorption by water vapor in the atmosphere, (3.4), figures 3.2 to 3.4. - Length of a direct ray between antennas over an effective earth of radius a, figure 5.1. - r,, r, Parameters used in computing the frequency gain function H, and defined by (9.4). - r₁, r₂ Distances whose sum is the path length of a reflected ray, figure 5.1. - \hat{r}_1 , \hat{r}_2 Direction of the most important propagation path from the transmitter to the receiver, or from the receiver to the transmitter. - r_{1i}, r_{2i} Straight line distances from transmitting and receiving antennas to a point on the ground a distance x_i from the transmitting antenna, figure 6.4. - r.m.s. Abbreviation of root-mean-square, - R The magnitude of the theoretical coefficient R $\exp[-i(\pi-c)]$ for reflection of a plane wave from a smooth plane surface of a given conductivity and dielectric constant, (5.1). - Re An "effective" ground reflection coefficient, (5.1). - Rainfall rate in millimeters per hour, (3.10). - R Surface rainfall rate, (3.10). - R Cumulative distribution of instantaneous path average rainfall rates, figure 3.14. - R(0.5) A function of $L_{dr} L_{cr}$, (9.14) figure 9.9. - s Path asymmetry factor, $s = \alpha / \beta_0$, (6.19). - T Reference absolute temperature, T = 288.37 degrees Kelvin. - T(r) Temperature in the troposphere in degrees Kelvin. - T ('K) Effective sky noise temperature in degrees Kelvin. - T.A.S.O. Abbreviation of Television Allocations Study Organization. - U(vρ) A parameter used in computing diffraction over a rounded obstacle, (III. 26) and figure 7.5. - v A parameter used in computing diffraction over an isolated obstacle, (7.1). - V(0.5, d_e) A parameter used with the calculated long-term reference value, L_{cr}, to predict median long-term transmission loss, figure 10.1 equations (15.4) and (III.67). - V_n(0.5, d_e) The parameter V(0.5, d_e) for a given climatic region characterized by the subscript n, (10.4) figure 10.1. - w_a, W_a Radio frequency signal power that would be available from an equivalent loss-free receiving antenna, W_a = 10 log w_a dbw, (2.2). - w_a^i , W_s^i Radio frequency signal power available at the terminals of the receiving antenna, $W_a^i = 10 \log w_a^i$ dbw, (2.1). - w_t , w_t Total power radiated from the transmitting antenna in a given band of radio frequencies, $w_t = 10 \log w_t$ dbw, (2.2). - W Available power at the terminals of a hypothetical loss-free isotropic receiving antenna, assuming no orientation, polarization, or multipath coupling loss between transmitting and receiving antennas, (2.13). - x A specified value, the discussion preceding (2.14). - x A variable designating distance from an antenna, figure 6.4 - x. The ith distance from the transmitter along a great circle path, figure 6.4. - x_0 , x_1 , x_2 Parameters used to compute diffraction loss, (8.2) figures 8.5 and 8.6. - x₀, x₂₀ Points chosen to exclude terrain adjacent to either antenna which is not visible to the other in computing a curve fit, (5.15). - \overline{x} The average of distances x_0 and x_{20} , (5.15b). - X, Y Initial bearings from antenna terminals A and B, measured from true north, figure 6.3. - y Terrain elevations, modified to account for the curvature of the earth, (6.10). - y(x) Modified terrain elevation, $y(x) = h(x) x^2/(2a)$, (5.16). - Y! Bearing from any point B' along the great circle path AB, figure 6.3. - Y(q) Long-term variability of L or of W in terms of hourly medians, (10.6) and (V.4). - Y(q, 100 MHz) Basic estimate of variability in a continental temperate climate, figure 10.2. - Y(q, d, 100 MHz) Basic estimate of variability as a function of effective distance, (10.6) figure 10.2. - Z Great circle path length between antenna terminals A and B, figure 6.3. - Z' Great circle path distance between an antenna and an arbitrary point B', figure 6, 3. - α The parameter α is defined in equation (3.9b) and plotted as a function of frequency on figure 3.9. - α_{0} , β_{0} The angles α_{00} , β_{00} modified by the corrections $\Delta \alpha_{0}$, $\Delta \beta_{0}$, (6.19). - α , β The angles between a transmitter or receiver horizon ray and a line drawn between the antenna locations on an earth of effective radius, a, (6.18) figure 6.1. - $\alpha(f_{GHz})$ The function α in (3.9b) as a function of frequency in GHz, figure 3.9. - Yoo Differential absorption in decibels per kilometer for oxygen under standard conditions of temperature and pressure, (3.4). - γ_r Rate of absorption by rain, (3.8). - Yrs Surface value of the rate of absorption by rain, (3.11). - γ_{wo} Differential absorption in decibels per kilometer for water vapor under standard conditions of temperature and pressure and for a surface value of absolute humidity of 10 g/cc, (3.4). - γ(r) Differential atmospheric absorption in db/km for a path length r, (3.1). - $\gamma_r(r)$ Differential rain absorption along a path r, (3.7). - $\gamma_0(h)$, $\gamma_w(h)$ Differential absorption in dB/km for oxygen and water vapor, respectively, as a function of height, h, (3.3). - $\Gamma(r)$ Absorption coefficient as a function of path distance r, (3.2) and (3.6). - δ_r , δ_t The effective half-power semi-beamwidth for the receiving and transmitting antennas, respectively, (9.11) and (9.12). - δ_{w} , δ_{z} Azimuthal and vertical semi-beamwidths, (2.6). - $\Delta \alpha_{\lambda}$, $\Delta \beta_{\lambda}$ Correction terms applied to compute α_{λ} , β_{λ} (6.19) figure 6.9. - Depression of field strength below smooth earth values, (5.19). - A correction term used to compute the effective height for high antennas, (6.12) figure 6.7. - The path length difference between a direct ray, r_0 , and a reflected ray, $\Delta r = r_1 + r_2 r_0$, (5.4), (5.9) and (7.1). - Auxiliary functions used to check the magnitude of error in the graphical determination of diffraction attenuation, (8.5) figures 8.5 and 8.6. - ΔH_0 A correction term applied to the frequency gain function, H_0 , (9.5) and figure 9.4. - ΔN The refractivity gradient from the surface value, N_s , to the value of N at a height of one kilometer above the surface, (4.2). - $\Delta \alpha_{0}(N_{g})$, $\Delta \beta_{0}(N_{g})$ The correction terms $\Delta \alpha_{0}$, $\Delta \beta_{0}$ for values of N_{g} other than 301, (6.21) figure 6.10. - $\Delta\alpha$ (301), $\Delta\beta$ (301) The correction terms $\Delta\alpha$, $\Delta\beta$ for N = 301, (6.21) read from figure 6.9. - Δh(h_r, N_s), Δh(h_t, N_s) The correction Δh_e as a function of N_s and of receiver and transmitter heights h_r and h_r, (6.12) figure 6.7. - η_s A function of h and N used in computing F_o and H_o , (9.3) and figure 9.2. - θ The angular distance, θ, is the angle between radio horizon rays in the great circle plane defined by the antenna locations, (6.19). - θ_{\perp} , θ_{\perp} Horizon elevation angles at the receiver and transmitter, respectively, (6.15). - Angle of elevation of a direct ray relative to the horizontal at the lower antenna, (5.12). See θ_b and $f(\theta_b)$. - θ Angle of elevation above the horizontal, figures 3.2 to 3.4. - θ Angle between radio horizon rays, assuming straight rays above an earth of effective radius, a, figure 6.1. - θ or, θ the angular elevation of a horizon ray at the receiver or transmitter horizon, (6.16) figure 6.1. - λ Free space radio wave length, used for example in (2.7). - μ The ratio $δ_{-}/δ_{+}$ used in (9.12) and figure 9.8. - A parameter that is half the value of η_s , used in computing loss in antenna gain, (9.11), (9.12) and figure 9.7. - v Radio frequency in hertz. - π A constant, $\pi \approx 3.14159264$. - o Correlation coefficient between two random variables. - ρ Index of curvature for the crest curvature of a rounded obstacle in the great circle path direction, (7.8). - ρ_{ij} The correlation between variations due to sources i and j, (10.8). - ρ_{1a} The correlation between variations Y and Y_a, (10.9). - ρ_{1r} The correlation between variations Y and Y, (10.9). - σ. The root-mean-square deviation of great circle path terrain elevations relative to a smooth curve fitted to the terrain, (5.1). - $\sigma_c(p)$ The standard deviation corresponding to the variance $\sigma_c^2(p)$. - Σ A symbol to represent the summation of terms, as in (5.15) where $\sum_{i=0}^{20} h_i$ means the sum of all values of h_i from i=0 to i=20. - Φ(v, p) The total phase lag of the diffracted field over an isolated rounded obstacle with reflections from terrain, (7.13). - $\Phi(v,0)$ The total phase lag of the diffracted field over an ideal knife edge with ground reflections, (7.13). - Φ_{A} , Φ_{B} Latitudes of antenna terminals A and B, (6.1) to (6.9) figure 6.3. - Φ_{B^1} Latitude of an arbitrary point along the great circle path from A to B, (6.7). - Ψ The grazing angle of a ray reflected from a point on the surface of a smooth earth, (5.1) figure 5.1, or grazing angle at a feuillet, annex IV. - ψ_m Minimum grazing angle, section 5.1 - ψ_p The acute angle between principal polarization vectors $\overset{\cdot}{e}$ and $\overset{\cdot}{e}_{pr}$, (2.11). Ω_r , Ω_t The half-power beamwidths of the receiving and transmitting antennas, respectively. - $\Omega_{\rm r}$, $\Omega_{\rm t}$ The half-power beamwidths of the receiving and transmitting antennas, respectively, (9.10).